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Abstract

We analyze the phenomenon of super-resolution in time-reversal acous-
tics. A signal recorded by an array of transducers and sent back reversed
in time approximately refocuses on the original source point. The refocus-
ing resolution is improved in an inhomogeneous medium when the pulse
has rich frequency content. We show that the back-propagated signal is
self-averaging in this situation. This explains the statistical stability of
the time-reversal refocusing and super-resolution.

1 Introduction

In time-reversal acoustics a signal is propagated from a source to an array of
receivers-transducers, where it is recorded and then sent back reversed in time.
The re-transmitted signal propagates back through the same medium and re-
focuses approximately on the source because of time-reversibility of the wave
equation. The refocusing is approximate since the array of transducers (also
called a time reversal mirror, or TRM) has a finite size which causes informa-
tion loss. The refocusing phenomenon of the time-reversed signal has many
applications in medicine, underwater sound, wireless communications etc., and
has been studied experimentally in many settings. Recent popular reviews [4, 5]
contain detailed description of various possible applications. One application is
kidney stone destruction, when the signal reflected from a kidney stone is time-
reversed, amplified and sent back. It refocuses on the stone and destroys it.
Time-reversal for a fixed frequency amounts to the phase-conjugation method
which has been studied extensively in optics [9]. However, it was observed
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experimentally that refocusing in time-reversal of broad band signals occurs
much more effectively than for a single frequency phase conjugation. One of
the purposes of this paper is to explain this difference.

It was also observed in experiments that refocusing effect is sharper when
the medium is inhomogeneous, or has reflecting boundaries. In a homogeneous
medium the width of the refocusing peak is given by the Fresnel zone. Its
size is of the order of AL/a. Here X is the wavelength, L is the propagation
distance to the time reversal mirror, and a is the size of TRM. Furthermore,
spurious focusing spots arise at the higher Fresnel zone locations. If the medium
is inhomogeneous then both the focusing resolution of the back propagated
signal may be better than the Fresnel limit and spurious ghosts disappear. For
instance, in underwater acoustics a signal with wavelength about 1m propagated
over a distance about 10km may refocus after time-reversal at a TRM of size
50m on a spot of the size of 1m, while Fresnel zone is of the order of 100m
(2, 8, 6].

One of the reasons for this super-resolution in a random medium is multi-
pathing [3], which effectively increases the size of the TRM because the arriving
signal has traveled through a larger part of the medium than in the homogeneous
case. However, this requires statistical averaging, while in actual experiments
compression is observed without any averaging (especially in the kidney stone
treatment) if the signal has rich frequency content.

We suggest here that the key for the statistical stability of the time-reversed
signal is decorrelation of different frequencies that occurs for every realization
of the random medium and does not require averaging. This idea was first
proposed and investigated numerically and analytically by one of the authors,
P. Blomgren and H. Zhao in a companion paper [1]. We present here a detailed
theory leading to super-resolution in a random medium based on frequency
decorrelation.

We assume that the size of the mirror a is smaller than the overall propaga-
tion distance L, so that parabolic, or beam approximation is valid [11]. Then
wave amplitude at frequency w = cyk is described by the Schrodinger parabolic
equation

2ik, + Aty + K2(n* = D)y =0, x= (z,9). (1)

Here n(z,y, z) is the index of refraction of the medium, and waves are propagat-
ing mostly in the direction z. We believe that all our results may be extended
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to the full wave equation, this will be pursued elsewhere. The parabolic ap-
proximation provides a simple setup, where time-reversal super-resolution may
be analyzed without additional technical complications. The wavelength A is
assumed to be much smaller than a and L. The correlation length of the fluc-
tuations is larger than the wave length. The latter requirement is needed for
the validity of the parabolic approximation. Fluctuations are assumed to be
weak. More precisely, we let € = A\/L be a small parameter, and consider the
fluctuations of the index of refraction in the following two related scalings:
x Yy oz
n(z,y,z) = 1+ VNep <N—5’N—5’N_g) (2)
with 1 K N < 1/¢, or
T Y z
n(z,y,2) =1+ Véu (5,5,5) (3)
with ¢ < 6 < 1. The first scaling is studied in Section 2, and the second in
Section 3. The main result of this paper is that the back-propagated and time
reversed signal is self-averaging. More precisely, it converges to its average in
probability in both scalings above, as ¢ —+ 0 and N — oo in the first scaling
(2), and as € — 0 and 6 — 0 in the second (3).

The paper is organized as follows. In Section 2 we first outline the derivation
of the parabolic approximation. Then, in order to establish the self-averaging
of the back-propagated signal, we relate it to the Wigner distribution (denoted
W) of a pair of Green’s functions for a rescaled version of (1). The Wigner
distribution is a function of a position and wave vector. It is a convenient
tool for a study of waves in a random medium [10]. In the first scaling (2)
we obtain a transport equation for W as ¢ — 0 for a fixed N and at a fixed
frequency. Passing then to the large /N limit we obtain a diffusion equation for
W in the wave vector space, which allows us to get an explicit expression for
the effective aperture of a Gaussian time-reversal mirror. The role of frequency
decorrelation in pulse stabilization and super-resolution is discussed in detail in
Section 2.4. This part of the paper is a detailed development of the analysis
outlined in [1]. The second scaling (3) is studied in Section 3. We first obtain
a Liouville equation for the Wigner distribution in the limit ¢ — 0 and fixed
0 > 0. Passing to the limit § — 0 we recover diffusion in wave vectors. The
Liouville equation provides a convenient setup for the study of the decay of
correlations of various frequencies and at different positions, which is done in
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Section 3.3. This leads to self-averaging of broad band time-reversed signals,
which explains the super-resolution phenomenon. We summarize our results in
Section 4.

2 Loss of correlation in forward scattering in a
random medium

We develop here in detail the theory of time-reversal in a random medium
outlined in [1].
2.1 The parabolic approximation

We start with the wave equation

A(x,y, z) Ot?

Taking its Fourier transform in time we get the Helmholtz equation
Al + k*n?(z,y,2)0 =0 (5)

with
u(z,y, z;w) = /dte‘i‘”tu(t, T, Y, 2).
R
Here k = w/cy is the wave number, ¢ is a reference speed, ¢(z, y, ) is the prop-
agation speed, and n(z,y, 2) = ¢y/c(x,y, 2) is the index of refraction. Through-
out the paper we define the Fourier transform by

f) = / dxe ™ f(x)
so that Ik
f(x) = / G0

The time reversal mirror is typically much smaller than the distance to the
source. This puts the problem in the narrow beam regime, and the parabolic
approximation may be used as follows. We write the solution of the Helmholtz
equation in the form

W(z,y, 2 k) = e*Y(z,y, 2 k) (6)
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and obtain
22k¢z + wzz + Axw + k2(n2 - 1)¢ - Oa X = (37: y)
We assume that the function v is slowly varying in z so that

k2] > |tz (7)

Then we get a parabolic (paraxial) initial value problem for :

ik, + Axth + k3 (n? — 1)y = 0, (8)
(0, %) = o (%).

The parabolic approximation is not valid near the point source where the beam
geometry is not appropriate. Moreover, it may not be used when the typical
size of inhomogeneities [ is comparable to the wave length A of the signal.
When kI = O(1) the variations of n(x, z) will produce oscillations in % in the z
direction on the scale [ ~ 1/k. That will make the two terms in (7) comparable
and violate the validity of the parabolic approximation.

2.2 The back-propagated signal in the high-frequency
limit
In order to study the effect of random inhomogeneities on the back propagated

signal we consider the regime of high frequency and weak fluctuations. More
precisely, we consider the following scaling:

(i) The wavelength A is short compared to the propagation distance L, and
we let ¢ = A\/L < 1 be a small parameter;

(ii) The fluctuations of the index of refraction are weak and isotropic:
((n=1)%) = 0(e).

Here and below (-) denotes averaging with respect to realizations of a

random medium.

(iii) The correlation length [ of the fluctuations is comparable to the wave
length: [ ~ A.
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If the fluctuations are strong or anisotropic then backscattering is important
and parabolic approximation may not be used. Our last assumption makes
the interaction between waves and inhomogeneities strong. However, it violates
condition (7) for the validity of the parabolic approximation. We will ignore
that for the moment but at the end of this section we will pass to the beam
approximation limit of the transport equation which will restore the validity of
the paraxial regime. This important issue will be addressed in detail in Section
3, where we will show how the beam equation may be obtained in one step
from the parabolic approximation bypassing the transport regime altogether
and without violation of (7).
Under assumptions made above we write

n(z,x) = 1+ Veu(z,x).

The random process p(z,x) is assumed to be a stationary isotropic mean zero

random process:
(u(z,x)) =0, (u(z,x)p(z+ 2, x+x)) = R(Z,X) (9)

with the power spectrum

A

R(Q,q) = /dzdxe_mz_iq'xR(z,x). (10)

The correlation function R(z’,x’) depends only on |2/| and |x'|.
We rescale the spatial variables x — x/¢, z — z/¢ and dropping the term

ep? /2 that is of a higher order, we obtain the high-frequency version of (8)

- € 62 € 2 X 2\ ¢
ke + S A + KEVE(S, 2 =0, (11)
The initial data should be rescaled accordingly:
3 & X
¥5(0,%) = ¥5(x) = o () (12)

so that the initial pulse enters the random medium at position x = 0.

The time-reversed and back-propagated field is constructed in the frequency
space as follows. The Green’s function G.(z,x; &) with a point source at (0, &),
€ = (&1, &) satisfies (11) with the initial data

Ge(oa X, g) = 5(X - 5) (13)
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The recorded wave field at the time reversal mirror at distance L from the

source along the z axis is given then by

(L, x) = / dnG(L, x; M) (n). (14)

Then the part of this signal recored at the mirror is sent back reversed in
time. Time reversal ¢ — —t is equivalent to the change w — —w, or k — —k.
Therefore the back-propagated signal may be approximated in the parabolic
approximation as

ﬁB — efikz’lﬁB(:E,y, 2; k‘)

in the unscaled variables, as in (6). The amplitude 15 solves the backward
Schrodinger equation after rescaling:

2
—ikeySP + %qu/ﬂf’ + k%@p(g, g)w’B =0 (15)
with the end condition
B (L,x; k) = v (L, x;—k). (16)

The identities
/ dxG. (L, x; & k)G (L, x; &) = 6(€ — &)

and

imply that the backpropagated field at the plane z = 0 may be written as
¥=P(0,¢€) = /dXGe(L, x; e&; — k)Y (L, x; —k) xa(x)
= // dxdnG.(L, x;€&; k)G (L, x5 k)5 (m; —k) xa(x).-

We choose the observation point x = €£ close to the source point x = 0 with
separation being comparable to the wavelength. The signal received at distances
much larger than the wave length will be negligible. Here x4 is the aperture
function of the mirror, which may be the characteristic function of the mirror,
that occupies region A in the plane z = L:

1 xe A

XA(X)= .
0 x¢ A
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However, we may consider more general aperture functions, when mirrors are

more complicated, for instance, x4 may be a Gaussian:

o x2/20>

1
Xa(x) = 2ma?

We will analyze our problem by the invariant imbedding method with respect

to the position of the time-reversal mirror. For that purpose it is convenient to
introduce

P (L, e€) = ¢=(0,€¢)

with the first argument in U reflecting the position of the time reversal mirror.
Recall that the incoming pulse for the wave equation is real and thus ¥(n, —k) =

¥(n, k). Then the back-propagated signal is given by

VoL, e€) = / / dxdnG.(L, x; €)Co(Lyxs MEEmxa(x).  (17)

The back-propagated signal in time near the source is given by

dw .
uE’B(t, g€, 0) = / %em\lﬁ’B(L, e&;w/cy),

where we put in explicitly the dependence of ¥Z on wave number k = w/cy.
Here the time t is measured after subtracting the travel time from the source
to the time-reversal mirror and back. As we shall see, the statistical properties
of the signal in time are very different from that for individual frequencies.

It is convenient to rewrite the field ¥ as follows, using the special form of
the initial data (12)

V(L c6) = 2 / / dndxxa (<) ()G (L %; €6) G (L, x: €n)
= / / dndyx a(y)vo(n) / dpWe(L,y,p; &, 1) (18)

We introduced here the Wigner distribution of two Green’s functions with
sources at €€ and €7, respectively:

dy ip. £y 24

. — 2 ipy _ . .

We.(z,x,p;&,n) =¢ /(27r)2€ Ge(z,x 2,€f)GE(Z,X+ 2,577). (19)
]R2

The scaling factor €2 that appears in (18) and (19) because we have normalized
the incoming pulse to have amplitude O(1) makes the limit of the Wigner
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distribution as ¢ — 0 at z = 0 non-trivial. More precisely, we have for any test

function ¢(x):

dxdye™®y ey
. — 2 _ 7 _
[ o .5 piém) = ¢ [ SEEosx - - e
x d(x + % —en)
_ [ 9XAY ipgg)tip(y—)/e ele+m) | x+y
— 6%’1)'(?7*6)(/5 <M> .
2
Therefore the initial data for the Wigner distribution is
eP-(n=£) e(E+n
WL(0,x,p) = 5= ) (20)

Note that we consider the Wigner distribution of Green’s functions with sources
at two different points. Therefore it needs not be real. It becomes real only if we
take the same point on the screen and on the mirror, that is, if the two source
points coincide: n = £. The exponential factor in (20) is extremely important.
It carries the phase information that is crucial in the time-reversal refocusing
phenomenon, since it takes place mostly due to phase cancellations.

2.3 The transport equation

Relation (18) shows that the backscattered field may be represented in terms
of the Wigner distribution, which is a well-studied object in the context of the
high-frequency limit in a random medium of the type we are considering [10].
The Wigner distribution satisfies the following initial value problem, which can
be derived from the rescaled Schrédinger equation (11) for the Green’s function:

L k7 o et o,
<[ (zxp+3) W (zxp-3)]

with the initial data (20). Here ji(w, q) is the Fourier transform of p(z,x) both
in z and x. An asymptotic theory based on a straightforward multiple scales
expansion (see [10] and references therein) shows that in the high frequency
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limit & — 0, the averaged Wigner distribution (W.) converges to the solution
(W(z,x,p)) of the following transport equation

(W dq - (p*—
kuﬂLp-Vx(W):kﬁ/ q2R<p q,p—q>

0z i (2m) 2k
x [(W)(z,x,q) = (W)(z,%,p)]
et (n—¢)
(W)(0,x,p) = W(S(X)- (21)

Here R(f,q) is the power spectrum of p defined by (10). We note that for
every realization of the random medium the Wigner distribution W, has a weak
limit W even without averaging. However, the limit of the unaveraged Wigner
distribution may not be described in simple terms as a stochastic process to the
best of our knowledge.

2.4 Pulse stabilization

As established by physical experiments discussed in the Introduction and refer-
ences given there, time reversal of very narrow band signals is not statistically
stable and refocusing is not very sharp. This reflects itself in the fact that for
a fixed frequency w = cok only the average (W) over realizations of u has a
nice limit, but not W, itself. The same is true for the back-propagated field
UeB(L,e&; k) by virtue of relation (18). However, as we will discuss in detail in
Section 3, the Wigner distributions for different wave numbers k;, k2 become
decorrelated in the high-frequency limit:

<Ws(2,X1,P1; kl)Ws(Z:X%p?; k2)> — <W(Z,X1,P1; k1)><W(zaX25P2; k?)) (22)
and thus
(USP(L, €€ k1) USP (L, e€; ko)) — (WP (L, €& k1)) (U (L, €5 ks)) — 0

as € — 0, with

UP(L,e€ k) = //dndyxA(y)@/_)o(n)/de(L,y,p;S,n)-
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Therefore we have

(e (t, ex, 0)2) = <( / g—:ei%ﬁB(L, et 3)>2>

Co

_ / dw1dw2eiw1t+iw2t<qﬁ,3(L,5&,ﬂ)\I’E’B(Laffa%»
Co

(2m)? Co
dwidws ot iwst g8 w1 B Wa
— [ Tt (L, e, L)W (L 6, 2).
Therefore, we obtain
(uSB(t,ex, L)?) — (u®B(t,ex, L))*> — 0 (23)

and hence Chebyshev’s inequality implies that
usB(t,ex, L) — (u®B(t,ex, L)) — 0

in probability as ¢ — 0. That means that the received time-reversed and back-
propagated signal is self-averaging and has a deterministic limit. We postpone
the detailed discussion of the decorrelation property (22) until Section 3. We
show in Section 3 that the Wigner distribution decorrelates for different wave
vectors even at the same frequency, and analyze this decorrelation in some
detail. The important difference between one-frequency and broad band time-
reversal is that in the former case only decorrelation for different wave vectors
plays a role, while in the latter both decorrelation for different wave vectors and
for different frequencies contributes to puls stabilization. We will also show that
decorrelation for different wave vectors occurs only for wave vectors separated
by a fairly large distance which is not a sufficiently effective mechanism to
provide pulse stabilization.

2.5 Beam approximation

The transport equation (21) was derived in the scaling when the correlation
length of the inhomogeneities is comparable to the wave length. This, as we
noted before, violates the validity of the parabolic approximation. In order to
reconcile the two theories we assume that the correlation length { = N with
N > 1, and rescale py(z,x) = VNu(z/N,x/N), as in (2). Then the rescaled
correlation function is given by

~

2%

z+272 x4+ x z
= NR(—
N ' N )> R(N’

Ry (2, x") = N{(u( u( )

X
:N)

2|
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and the power spectrum becomes
zZ X
N’ N

We may now perform the transport limit, letting first € — 0, and then consider

Ry(9,q) = N/dzdxe_mz_iq'xR( ) = N*R(NQ, Nq).

the large N limit of the transport equation. The operator on the right side of
the transport equation (21) takes now the form
2

v [ 9 (Np2 9 N - q>) ) (2%, @) — (W) (=, )]

(2)? 2k
= p [ (D) Q) [ exp + D) - ) xom)]
K[ da (1 &(W) (2 x,p)
= 7/ (27r)2R (E(q-p),q) L
k? dq 0R (1 o O(W)(z,x,p) 1
5 [ reon (#la mha) a0 o

We used here the isotropy of fluctuations R(€, q) depends only on || and |q].

Thus in the leading order we obtain a diffusion equation in the p variable:

o(Ww) k3 0 o(W)
—r : = ——|Dj; 24
with the diffusion matrix given by
_ dq -~ (1
Dij(p) = / (%)QR (E(q p),q> Gigj- (25)

R2
2.6 Application to super-resolution in time-reversal

The diffusion equation (24) is the basis of a simple explanation of the super-
resolution phenomenon. Let us assume for simplicity that the power spectrum
R(Q, q) is independent of 2. Then the diffusion coefficient D;;(p) = DJ;; with

D=3 [ Gokiala?

RQ

independent of p. Equation (24) may be now solved explicitly by taking the

Fourier transform in x and p and using the method of characteristics. Let

A

W(zay) = / dxdpe PV (W) (2, x, p)
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be the Fourier transform of (W). We solve (24) to get

[ o)) = [ Ghse i a0)

k 2
— [ 2 ) gikG(&—m)/z—Dk*(n—£)*2/6
21z

Then the average time-reversed and back-propagated field is given by
W(Lcik) = [ dndyxay)in(n) [ dpO¥(Ly,piém)

2
— <2//TLL) /d"DA(A <k(77L_ g)) @Eo(n)e—Dk%T)—OQL/G.

We see that the effect of the random medium is the additional factor e~ Pk*n”z/6

Let us consider a model case when the aperture function is given by a nor-

malized Gaussian

1 e a2 ~ _a2lgl2
XA(Y):%G vl /(2‘1); XA(Q):e “la/2

and the initial pulse is a delta-function: ¥y(n) = §(n). Then we obtain

k 2
VB (L, 6 k) = (m) ¢RI DI

Therefore the effective aperture in the presence of randomness is given by

DL3
ae:\/a2+T. (26)

A remarkable feature of this expression is that the effective aperture is inde-
pendent of frequency, and thus the same expression is true in the time domain.
Recall that we have obtained it in the beam approximation, thus we must have

Qe
— < 1,
L

therefore it may applied only as long as randomness is not too strong:

L2—6L2

DK i
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3 The beam approximation and random geo-
metrical optics

We show in this section an alternative way to derive the diffusion equation (24)
in a regime when the correlation length of the fluctuations is much larger than
the wave length, which corresponds to random geometrical optics. That scal-
ing allows to avoid violating the validity of the parabolic approximation in an
intermediate step as happened in the transport regime. We consider the regime
when the wavelength )\ is short compared to both the propagation distance L
and the correlation length [. We let ¢ = A\/L < 1 be a small parameter as
before. However, we consider a different type of randomness, motivated by the
combination of the two scaling limits we performed in Section 2: weak fluctua-
tions and narrow beam. Recall that the narrow beam scaling corresponded to
randomness of the form v/ Neu(x/(Ne¢), z/(Ne)). We performed first the limit
¢ — 0 and then N — oo. Instead of doing these two limits we consider random
fluctuations of the form v/du(x/8) with ¢ < § < 1. We will first take the limit
¢ — 0, and then let 6 — 0. This scaling with § > ¢ has an advantage that
we do not violate condition (7) for the validity of the parabolic approximation.
The first limit € — 0 at a fixed 6 > 0 corresponds to doing geometrical optics in
a random medium. The second limit § — 0 is weak fluctuations and large dis-
tance propagation in the geometrical optics regime which leads to the diffusion
equation (24)

3.1 The Liouville equation

We rescale the spatial variables x — x/¢ and z — z/¢ and obtain under our
assumption regarding the random fluctuations

2

ikt + %sz/f + K2 s (x, 2)9° = 0. (27)

We denoted here ps(x, 2) = Vou(x/6, 2/5).

The time-reversed and back propagated field can still be expressed in terms
of the Wigner distribution of a pair of Green’s functions as in (18). The Green’s
function G®(L,x; &) is now the solution of (27) with initial data (13), and the
Wigner distribution is defined by (19) with G. replaced by G°. The Wigner
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equation for W? now takes the form

K B T = k—/ e .
X [WE (z,x,p+ %1) - W, (z,x,p— s?qﬂ

with the initial data (20). It is straightforward to show that as ¢ — 0 with a
fixed § the Wigner distribution W? converges weakly to a limit measure W?.

The measure W? satisfies the Liouville equation

ow? ;s K X z 5
R S AU (5,5)-VPW —0 (28)
with the initial data as in (21)
- etP-(n=¢) 5 )
(Oa X, P; 65 77) - (271')2 (X) ( 9)

For a fixed § > 0 this equation describes the phase space version of the standard
geometrical optics. In particular, one may recover the usual transport and
eikonal equations for the amplitude A and phase S by making an ansatz W =
|A|26(p—V.S). We have a different type of initial data, so standard geometrical
optics would not be immediately applicable, while the Liouville equation still
holds.

3.2 The weak fluctuations limit

We are interested in the limit of W? as § — 0, which is the weak fluctuations
limit. This problem for equation (28) is known as the stochastic acceleration
problem. It was studied rigorously in [7] for a potential p that is independent
of “time” z. The fast z dependence makes our situation significantly easier
for a rigorous analysis. We will present a formal multiple scales asymptotic
expansion that gives a quick way to get the limit of W?°.

We introduce the fast scale variables 7 = z/e and y = x/e and consider an
asymptotic expansion for W? of the form

WJ(Z7 XJ p) = W(O) (Z7 X7 p) + \/SW(]-) (27 7—5 X7 y7 p) + 5W(2) (z’ 7-7 XJ y’ p) + R

We assume that the leading order term W is independent of the fast variables
7 and y and that it is deterministic. We insert this expansion into (28) and
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obtain an equation for W(1:

ow
or

A formal solution of this equation is given by

k +p- -V, W = kY (y,7)- VWO,

0
WO (z,7,x,y,p) = —k’ / Viuly +ps, 7+ ks) - VWO (x, p).

In the next order we obtain

oW +p- VWO + kaW(Q)
0z or

Averaging this equation eliminates the gradients of W® and we get

oW )
0z

We insert the expression for W) into the above and obtain

k +p- VW = -k Vpu(y,7) - VoW,

k +p -V WO = 2V (y,7)- VWD),

—E (Vi (y,7) - VoW D)
0

_k4<aﬂ(y,7')i /8u(y+ps,7+ks) ow O (x, p) >
Oy;  p; |. OYm OPm

gl /°° (OPR(ps, ks) oW O

- 20p; OYiOYym  Opm

_K o / dq R( q'p) . ow®

Then we get the diffusion equation for W(©:

oW K

k +p- VWO =
0z

8W(0)} (30)

2 Op; [ ij(P)W
with the diffusion matrix D;; given by (25) as in (24). A rigorous version of
the above formal calculation would show that only the average (W?°) converges
to the solution W(® of (30) as was already observed in the transport/beam
approximation in Section 2. Therefore we recover the diffusion equation (24)
obtained in Section 2, but now we bypass the intermediate step of the radiative
transport, and go through random geometrical optics instead. The two paths
from the parabolic approximation to diffusion in the wave vector space lead to
the same result.
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3.3 Pulse stabilization and decay of correlations

As we discussed in Section 2.4 pulse stabilization is closely related to decor-
relation of the Wigner distribution for various frequencies. We analyze this
decorrelation now and show that for nearby points it occurs even for the same
frequency, and correlations persist only for short times.
We start by looking at the behavior of the higher moments of W°(z, x, p; k)
at the same point:
Wh, = [W°(z,x,p; k)"

Then W,, satisfies the same Liouville equation as W?°:

ko +p-Vme+%Vu(

with the initial data

X z

5’6

) Vel =0 (31)

Wr(rsz (07 X, p) = [WO(X’ p)]m

Here W, is the initial data for W, which we take as a smooth approximation
to (20). Then the same asymptotic analysis as in the previous Section shows
that as § — 0 the moments (W?) converge to the solution W,, of the diffusion
equation (30) with the initial data W,,,(0,x, p) = [Wy(x, p)]™. In particular we
have
Win(z,%,) # WO (z,x, p)]"™

and thus W? does not have a deterministic limit, which means once again that
for a fixed frequency the Wigner distribution is not self-averaging.

However, as we show now, the Wigner distribution even for nearby points
becomes decorrelated on a short time scale even at the same frequency. It is

convenient to introduce
Wo(z,x,p; k) = W (2, %, kp; k).

It satisfies the Liouville equation with k-dependence preserved only in the initial
data:

Wk (Oa X, P; k) = WO (Xa kpa k)

Its solution is obtained by the method of characteristics as

Wi(z,x,p; k) = Wo(X(0; 2, p), kP (0; x.p))
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with X? and P? being the solutions of

)
% =P’ XO(t) = x

dP? 1 X0 2 5
E—%V,’i(T,g), P (t)—P-

Therefore W% may be written as

W (2%, pi k) = Wo(X°(0:2, 7)) kP (05, ) (32)
As our calculation leading to (30) showed, and as may be shown rigorously as
in [7], the process P converges as § — 0 to a diffusion process P with generator

as in (30), and X° converges to its integral

X(z) =x+ /OtP‘s(s)ds.

As relation (32) shows, correlations of W both at two different frequencies
and at two different points in the (x,p)-space may be described in terms of
correlations of the processes X°(t,x, p), P°(t,x, p) starting at different points.
Therefore we look now at the correlations of (X°, P°) and show that they persist
only for short times. That will allows us to conclude that W decorrelates both
for two different points and at different frequencies.

It is intuitively clear that if the process (X, P°) starts at two points x;
and x5 separated by a distance that is large compared to the randomness scale
0 then there is no reason to expect that the processes are correlated because
they will sample uncorrelated media. Therefore we consider the starting points
separated by distance of order § in x. It is also clear that the points should be
close in p—space, otherwise the distance between the particles in x will become
much larger than the correlation length at distances O(¢) in z and the particles
will decorrelated on this scale. Motivated by these considerations we introduce
the second moment of W?

U'(2,%,y,p,q) = W(z,x,p)W’(2,x + §y, p + 6*q)

with the parameter ;1 > 0 to be chosen. It measures the initial particle separa-
tion in the wave vector space. We get the equation for U°:

U’ 5L ue1 s 1 X 2 5
& 4 p VU 464 VU +%w(5,5)-va

0z
oS 2) S (5] w0

X

)
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We rescale now also the spatial variables z = %7 and x = §*x’ with o > 0 to
be chosen to get

ou° ot o x0T
a—T+p-Vx/U6+5+“ lq‘va6+5 1/2VN<51—Q,(51—Q>'VPU6

S x' T x' T 5
+ 67H 1/2 [Vﬂ<51_a+y’51——a)_vﬂ<51——a751——a>}‘VqU =0

We choose now parameters y and « as follows. The diffusive scaling requires
that 0 <1 — a and

I 1-a
GTHET T T
and so p = /2 < 1/2. We will also assume that g > 1/3 so that a+pu—1 > 0.

Thus the range of p we consider is 1/3 < p < 1/2. Then a formal multiple

scales expansion very similar to that in Section 3.2 and with the fast variables
n=71/8""% and x" = x'/6'" % shows that (U°) — U. The function U solves
the diffusion equation

oUu 0 2) oUu
a7 +p- VU= 0q; (D" (y,p) )

if 4 > 1/3, and

oU o (o, _OU
— 4p-VeU+q -V,U=— (D (y,p)—
or ' P ¥ = ba ( i ¥ p)aq)

if 4 = 1/3. The diffusion coefficient Dg) is given by

* [0?R(y + ps,s) O*R(ps,s)
DOy p) = / [ .8) ’ }
5 0P = [ T oy 0w 3,9,

o

This result may interpreted as follows: we start two particles at distance O(6)
apart in the physical space and O(0*) apart in the wave vectors. Then the
physical separation remains of order O(¢) while wave vectors diffuse apart on
the time scale O(§%*). The wave vector separation keeps growing until it reaches
the size O(6'/3). At this time the spatial separation also starts to grow and the
particles separate in the physical space on the penetration scale O(6%°) in z
inside the random medium. For larger distances inside the medium they are no
longer correlated since their separation is larger than O(9).

It is interesting to interpret our result in terms of the stochastic caustic
theory [12]. The latter predicts that in a random medium that has correlation
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length a and fluctuations of size o a caustic will form at distance O(c~?/3qa)
along the ray. At this moment the ray angle deviation is of order O(c?/?)
while position deviates O(1) from its deterministic value. We have o = v/8 and
a = §, so a caustic will form at z = O(671/3§) = O(6%3), when rays deviate
by ¢ = O(6'/3). This is exactly the scaling that we obtain for the decorrelation
distance and wave vector separation at the decorrelation moment. Therefore,
as one might expect, decorrelation in the phase space is closely related to the
caustic formation, which is physically quite natural with strong ray fluctuations
being associated with the onset of caustics.

4 Concluding remarks

We have analyzed the time-reversal acoustics in a weakly random medium with
predominantly forward scattering. We have considered two possible asymp-
totic regimes and have shown that both of them lead to self-averaging of the
back-propagated time-reversed signal. This explains the statistical stability of
the refocusing phenomenon in time-reversal experiments. We have also shown
that the the super-resolution phenomenon may be explained in this asymptotic
regime as an effective increase in the aperture of the time-reversal mirror be-
cause of multipathing effects. We considered the decay of correlations of waves
propagating with different frequency, wave vectors and positions, and related
the decorrelation to the stochastic caustic theory. Numerical results that moti-
vated the theoretical results of this paper have been presented in [1].
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